李珊

发布者:周春宇发布时间:2023-02-22浏览次数:1455


姓名

李珊

职称

副教授

主要研究领域

偏微分方程数值方法

电子邮箱

shanliusst@126.com

办公室

beat365手机版官方网站816

所在部门

beat365手机版官方网站数学系


教育背景与工作经历

教育背景

硕博士,计算数学,上海大学,2008-2014

学士,信息与计算科学,山东科技大学,2004-2008

访问学者,计算数学,密歇根大学,2011-2012


工作经历

副教授,上海理工大学,2020-至今

讲师,上海理工大学,2014-2020



科(教)研项目及成果

作为项目负责人获得国家自然科学青年基金和数学天元基金资助,作为主要成员参研国家自然科学基金面上项目多项。在国内外学术刊物上发表论文数篇。


  1. Li Shan, Sun Guilei,Guo Yuling and Wang Zhongqing, A Multiple Interval Chebyshev-Gauss-Lobatto Collocation Method for Multi-Order Fractional Differential EquationsGlobal, E. Asian J. Appl. Math., 2022,12 (3), 649-672

  2. Li Shan, Wu Jinju and Wang Zhongqing, Sobolev orthogonal Legendre rational spectral methods for exterior problems, Int. J. Comput. Math.,2022, 99 (2), 370-390

  3. Li Shan, Lai Zhenyan, Jin Lusha and Yu Xuhong, Diagonalized Gegenbauer rational spectral methods for second- and fourth-order problems on the whole line, Appl. Numer. Math., 2020, 151, 494-516.

  4. Li Shan, Yan Shimi and Wang Zhongqing, Efficient Legendre dual-Petrov-Galerkin methods for solving odd-order differential equations , Discrete Cont Dyn-B.,2020, 25 (4), 1543-1563

  5. Li Shan, Li Qiaoling and Wang Zhongqing, Sobolev orthogonal Legendre rational spectral methods for problems on the half line, Math. Methods Appl. Sci., 2020, 43 (1), 255-268

  6. Qin Yonghui, Li Shan, Li Jingliang and Li Qiaoling, Multidomain Legendre-Galerkin Chebyshev collocation least squares method for one-dimensional problems with two nonhomogeneous jump conditions, Int. J. Comput. Math.,, 2019, 96 (12), 2411-2422.

  7. Li Shan, Boyd, John P., Spectral methods in non-tensor geometry, Part II: Chebyshev versus Zernike polynomials, gridding strategies and spectral extension on squircle-bounded and perturbed-quadrifolium domains, Appl. Math. Comput., 2015,269, 759-774.  

  8. Li Shan, Boyd, John P., Approximation on non-tensor domains including squircles, Part III: Polynomial hyperinterpolation and radial basis function interpolation on Chebyshev-like grids and truncated uniform grids, J. Comput. Phys., 2014, 285, 653-668.

  9. Li Shan, Boyd, John P., Symmetrizing grids, radial basis functions, and Chebyshev and Zernike polynomials for the D-4 symmetry group; Interpolation within a squircle, Part I, J. Comput. Phys., 2014, 258, 931-947.



主讲课程

高等数学;C程序设计


学术活动与社会服务



荣誉

2018年获校教学成果一等奖




返回原图
/